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Introduction 
  

MIL-T-83133C grade JP-8 is of interest to the U.S. Army as the single fuel for the 

battlefield. The conversion to JP-8 occurred primarily to improve the safety of aircraft, 

although the “single fuel for the battlefield” concept (and the similarity of jet fuel to 

diesel fuel) is centered on the use of aviation kerosene in all Air Force and Army aircraft 

and ground vehicles. Detailed chemical kinetic mechanisms that describe combustion of 

many of the components in JP-8 are not available and are unlikely to be developed in the 

near future. Hence there is a need to study the characteristics of JP-8 experimentally. 

The following is the final progress report on our developments and 

accomplishments through May 2001- May 2004. The detail of the experimental facilities 

including two combustion chambers, spherical and cylindrical, optical set up, a high 

temperature oven and also our thermodynamic model used to calculate burning speed 

were discussed in the last reports and will be briefly discussed here. Measurements have 

been done in these facilities for gaseous and liquid fuels over the wide range of 

temperature and pressure. In the last year we developed a new heating system for fuel 

injection line in cylindrical vessel. The liquid fuel line in the spherical vessel was 

redesigned. Burning speeds of premixed JP-8 air have been measured for a range of 

temperature and pressure. Pictures of JP-8 flame have been taken using the high speed 

CCD camera in the cylindrical chamber. The results are presented in this report. 

 

Experimental Set up 

The burning speed measurements were made in the existing spherical combustion 

chamber. The spherical chamber consists of two hemispheric heads bolted together to 

make a 15.4 cm inner diameter sphere. The chamber was designed to withstand pressures 

up to 425 atm and is fitted with ports for spark electrodes, diagnostic probes, and ports 

for filling and evacuating it. A thermocouple inserted through in one of the chamber ports 

was used to check the initial temperature of the gas inside the chamber. A Kistler 603B1 

piezo-electric pressure transducer with a Kistler 5010B charge amplifier was used to 

obtain dynamic pressure vs. time records from which the burning speed was determined. 

Ionization probes mounted flush with the wall located at the top and bottom of the 
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chambers were used to measure the arrival time of the flame at the wall and to check for 

spherical symmetry and buoyant rise. 

The spherical vessel is housed in an oven which can be heated up to 500 K. 

Liquid fuel is stored in a 115 cc heated pressure vessel and is transferred through a heated 

line inside the oven to the spherical chamber. Several thermocouples are located on the 

line from the fuel reservoir to the vessel to monitor temperature of the fuel passageway.  

A heated strain gauge (Kulite XTE-190) in the oven is used to measure partial pressure of 

fuel in the vessel.  

The companion cylindrical chamber is made of SAE4140 steel with an inner 

diameter and length of 133.35 mm. The two end windows are 34.93 mm thick Pyrex with 

a high durability against pressure and temperature shocks as well as having very good 

optical properties. A Z-type Schlieren/Shadowgraph ensemble has been set up to 

visualize the flame propagation. A high speed CCD camera (1108-0014, Redlake Inc.) 

with a capture rate of up to 8000 frames per second is placed very close to the focal point 

of the second mirror. Two band heaters and a rope heater wrapped around the cylindrical 

vessel are used to heat up the inside temperature of the vessel up to 500 K. This chamber 

is equipped with a heated liquid fuel line system, a pressure strain gauge and 

thermocouples similar to the spherical vessel. The oven was omitted to permit flame 

observation for this application.  

The gas handling system used with these facilities consists of a vacuum pump for 

evacuating the system and a valve manifold connected to gas cylinders for preparation of 

the fuel/oxidizer/diluent mixtures. Partial pressures of the fuel mixtures were measured 

using Kulite strain gauge pressure transducers in the 0-15 atm range. Two spark plugs 

with extended electrodes were used to ignite the mixture at the desired location in the 

chambers. An electronic ignition system controlled by the data acquisition program 

provides a spark with the necessary energy.  The data acquisition program synchronizes 

the ignition with the dynamic pressure recording and Schlieren/Shadowgraph 

photography. 

The data acquisition system consists of a Data Translations 16 bit data acquisition 

card, which records the pressure change of the combustion event at a rate of 250 kHz. 

The analog to digital converter card receives the pressure signal from the charge 
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amplifier and the signals from the ionization probes. All signals are recorded by a 

personal computer and an output data file is automatically generated. The output data 

files include the dynamic pressure and its corresponding time.  

The test procedure begins by evacuating the vessel and gas handling system using 

the vacuum pump. The chamber then is filled with JP-8 vapor to the desired pressure and 

air is added. The vessel and the fuel tank are at the same temperature during the filling. 

After the chamber is filled with the proper mixture, several minutes are allowed for the 

system to become quiescent before it is ignited. This will prevent any turbulence inside 

the vessel. Six thermocouples on the liquid line are used to make sure that temperature 

along the filling line is never below the condensation temperature for JP-8. At least three 

runs at each initial condition were made to provide a good statistical sample. Based on 

statistical analysis, it was found that three runs are sufficient to achieve a 95% confidence 

level. Figure 1 shows the schematic of two combustion chambers. 

Figure 2 shows a schematic of the liquid fuel line and the cylindrical vessel. The 

liquid fuel line system is equipped with Kulite XTE-190 pressure strain gauge and 

thermocouples similar to the spherical vessel. A 50 cc open liquid fuel reservoir is 

connected to the vertical liquid line 15 cm above the table. Two valves are controlling the 

liquid flow rate. The line forms a coil around a 7 cm diameter tube which is heated up to 

500 K. This allows the liquid fuel to vaporize as it slowly moves through the coil. The 

partial pressure of the fuel is monitored by the pressure gauge as it slowly occupies the 

system. Figure 3 shows the fuel reservoir and heated coil on the line.  

 

Theoretical Model 

The theoretical model used to calculate burning speed from the pressure rise in a 

constant volume chamber is based on one previously developed by Metghalchi and Keck 

and Rahim et al with some modifications. The burning velocity is calculated by the 

equation: 

fuu A/xv mS &=  
(1)

Where: 

uS : Burning velocity 
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m : Mass of the gas mixture in the chamber 

uv : Specific volume of the unburned gas 

x& : Mass fraction burning rate 

fA : Flame area 

Using the volume and energy equations, temperature and mass fraction of burned 

gas are determined iteratively: 
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Where: 
e : Specific internal energy. 

E : Total initial energy of gas in the chamber. 

Q : Energy transfer via heat interaction from boundary layer to the vessel and 

radiation from burned gas to the wall. 
x : Mass fraction burned. 

x′ : Total mass fraction of gases outside the boundary layer 

x ′′ : Integration variable. 
v : Specific volume. 

V : Combustion chamber volume. 

The subscripts b and u refer to the burned and unburned gas respectively and 

subscript b.l. and s refer to boundary layer and isentropic process. 

 

Experimental Results 

 
1. Gaseous Fuel, methane-air-diluent mixtures:  
 
Measurements have been done for methane-air-diluent (Extra diluent consisting 

of CO2 and N2 will be added to simulate the conditions in an engine) over the pressure 
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range of 1-20 atm and temperature range of 298-650 K for equivalence ratios of 0.8-1.2. 

In the approach taken here, the pressure is the primary measurement. A thermodynamic 

analysis of the pressure time record that was used to calculate laminar burning speeds has 

been presented in the previous report. The measured values were compared to PREMIX 

code’s theoretical predictions using GRI-Mech 3.0 mechanism. As it was expected, the 

agreement is very good at high temperature, low pressure condition. GRI-Mech 3.0 

predicts higher values at high pressure, low temperature conditions. 

Investigation of cracking or wrinkling has been done in the cylindrical chamber. 

In order to observe at what pressure the flame starts to become cellular, flames have been 

visualized in the cylindrical chamber. The burned gas volume and pressure relation has 

been plotted in Figure 4 for different mixtures. It can be seen that the effect of 

equivalence ratio, diluent percentage and initial pressure is very small on the behavior of 

this curve. The final pressure achieved in the combustion chamber is different for 

different mixtures. 

Shadowgraph photographs of flame propagation for stoichiometric methane-air-

diluent mixtures with initial pressures of 1 atm and diluent of 0-15% (pi = 1 atm, Ti = 298 

K) are shown in Figure 5. Inside the cylindrical vessel, the pressure reaches 

approximately 5 times its initial value before the flame hits the wall. It can be seen that 

throughout the whole experiments, the flame is smooth and spherical for all these 

mixtures.  

The burning speeds along isentropes for stoichiometric methane-air-diluent 

mixtures with initial pressures of 1 atm and diluent of 0-15% are shown in Figure 6. The 

agreement between measured values and PREMIX calculations are good. Also in this 

figure, the power law fits to the experimental data have been shown along with the actual 

data. It can be seen that adding diluent decreases the burning speed and the final pressure 

achieved in the vessel becomes smaller. Mixtures with more diluent have lower flame 

temperature and consequently lower flame speed. In mixtures with high percentage of 

diluent, buoyancy can be significant. This can be detected using the ionization probes 

signals. In Figure 6 all the measured values are for smooth flames, therefore the measured 

values are the laminar burning speeds.  
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At high pressures, the flame front is cellular and instabilities can be observed even 

at smaller radii, as shown in Figure 7a. Shadowgraph photographs of flame propagation 

for stoichiometric methane-air-diluent mixtures with initial pressures of 5 atm and diluent 

of 0-15% (pi = 5 atm, Ti = 298 K) are shown in Figure 7. Cellularities can be seen in 

methane-air mixture with no diluent at pressures around 7-8 atmosphere. By adding 

diluent to the mixture, part b-d of the figure, although the flames are still cracked, but 

they do not develop to any cellular structure. By adding diluent up to 15%, cracks 

become less but the effect of buoyancy can be observed. 

Figure 8 shows the burning speed of stoichiometric methane-air-diluent mixture 

with initial temperature of 298 K, initial pressure of 5 atmospheres and diluent range of 

0-15%. Again as we increase the amount of diluent the burning speed decreases. It can be 

observed that the agreement between measured values and PREMIX is good for mixtures 

with 5% diluent and higher. For methane-air mixture with no extra diluent, the measured 

values are higher than PREMIX. This again can be due to the instabilities in flame 

structure that increases the burning rate and consequently the measured values are higher 

than laminar burning speeds calculated by PREMIX. This has been verified in Figure 7a. 

As it has been discussed in the previous section, the flame becomes cellular for 

stoichiometric methane-air mixtures with initial pressure of 5 atm, at pressures around 7-

8 atm.  

In Figure 9, the lean methane-air mixture is at higher pressure (pi = 5 atm, φ = 

0.8). It can be seen in Figure 9a that at a pressure ratio (p/ pi) of 1.26, cells start to grow 

on the flame surface. This might be the reason for the higher measured values than 

PREMIX calculations in Figure 10. The burning speeds of cellular flames are shown by 

hollow symbols in Figure 10. The effect of diluent on the measured and calculated 

burning speeds along isentropes for methane-air-diluent at an equivalence ratio of φ = 

0.8, initial temperature of 298 K and initial pressure of 5 atmosphere has been shown in 

Figure 10. Adding diluent reduces the burned gas temperature making the flame slower 

and moving it into the low temperature/high pressure regime. As can be seen, the 

agreement between calculations and experimental results is poor. In the case of 0 and 5% 

diluent the measured values cross the PREMIX predictions. As the amount of diluent is 

increased to 10 and 15%, PREMIX predicts higher values. In order to explain this, more 
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studies of flame structure are required. In Figure 9b-d, flame propagation of methane-air-

diluent mixtures (pi = 5 atm, Ti = 298 K) with 5, 10 and 15% diluent respectively, are 

shown. Instabilities can be observed around a pressure ratio of 1.6 in 9b. This could be 

again the explanation for the higher measured values than PREMIX predictions for this 

mixture at around the same pressure. For a methane-air mixture with 10 and 15% diluent, 

the flame is stable due to excess nitrogen, which suppresses instabilities. Measurements 

have been made only up to the point that flame hits the top wall. Ionization probes 

mounted flush with the wall at the top and bottom of the chambers are used to measure 

the arrival time of the flame at the wall and check for spherical symmetry and buoyant 

rise. Adding diluent makes the flame slower and consequently the flame is buoyant and 

in the some cases is also distorted.  

Shadowgraph photographs of flame propagation for rich methane-air-diluent 

mixtures with initial pressures of 5 atm and diluent of 0-10% (pi = 5 atm, Ti = 298 K and 

φ = 1.2) are shown in Figure 11. The flames are smooth for all the mixtures with different 

amount of diluent. In Figure 12, burning speeds of same methane-air-diluent mixtures at 

an equivalence ratio of φ = 1.2 are shown. As is shown in this figure, PREMIX over-

predicts for mixtures with 0, 5 and 10% diluent. As can be seen in Figure 12, the 

measured burning speeds at high pressures for rich methane-air mixture are lower than 

PREMIX predictions. Considering Figure 11, it can be concluded that for stable flames at 

high pressures, measured flame speeds are lower than PREMIX predictions. Other 

investigators have also seen disagreement between measured burning speeds and 

calculations using GRI-Mech 3.0 model at high pressures. For unstable flames at high 

pressures, the measured values are higher than PREMIX because of higher speed of 

cellular flames. 

Mixtures of gaseous and liquid fuel with air have been burned in the cylindrical 

vessel with new heating facility to experiment at higher initial temperatures. Flame 

pictures have been taken using the Schlieren/Shadowgraph set up and high speed CCD 

camera.  

Figure 13 presents the flame propagation of stoichiometric propane air mixture at 

initial temperature and pressure of 450 K and 1 atm, respectively. The pressure and 

temperature at the end of combustion when flame hits the wall are about 7 atm and 650 
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K, respectively. Each picture is taken 3 ms after the previous one. As it is shown in the 

pictures, the flame is smooth and not buoyant till it hits the wall. This supports our 

assumption in burning speed measurements. 

 

2. Liquid Fuel, JP8-air mixtures: 
 

Flame pictures of Ethanol and air mixture are shown in Figure 14. The mixture is 

stoichiometric and initial temperature is 298 K. Initial pressure is 1 atm. All pictures are 

shown with 3 ms time difference from their previous one. Ethanol is liquid in room 

temperature. However, its vapor pressure at room temperature is enough to make a 

stoichiometric mixture. Figure 14 shows that the flame is smooth and there is no 

instability till it quenches at the wall. Again there is no sign of buoyancy on the flame. 

The final pressure and temperature reach to about 6 atm and 450 K. 

 

• Burning Speed of JP-8  

Burning speeds of JP-8 air mixtures at wide range of temperature, pressure and 

stoichiometric ratio has been measure using the spherical vessel and pressure method.  

Figure 15 shows the flame propagation of stoichiometric JP-8 and air mixture at 

initial temperature and pressure of 450 K and 1 atm, respectively. Each picture shown is 

taken 3 ms after its previous one. Flame propagates smoothly almost all the vessel. 

Instability starts at pressure of 5 atm and temperature of 650 K. This instability shows 

itself as cracks on the flame surface which turns into cellular form as pressure and 

temperature rise. Again there is no buoyancy on the flame. This Figure suggests that for 

higher pressures flame is likely to be cellular and not laminar. 

Burning speed measurements have been made in the spherical chamber using the 

same thermodynamic model for JP8-air mixtures. In Figure 16, the pressure-time history 

of stoichiometric JP8-air mixtures with initial temperature of 500 K and initial pressure 

of 1 atmosphere. Ionization signals are also shown in this figure. The signals verify that 

for this particular flame there is no buoyancy effect and flame is symmetrical.  

By increasing the initial pressure to two and five atmospheres, flame becomes 

slower and also slightly buoyant. The ionization signals show about 2 ms discrepancies in 
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Figures 17 and 18. Burning speed calculations have been done only up to the point that 

flame hits the wall at the top.  

The burning speeds vs. unburned gas temperatures calculated from the pressure 

records in Figures 16-18 are shown in Figure 19. The burning speeds are shown along the 

isentrope and it should be remembered that the pressure is increasing along each 

isentrope. It can be also observed that by increasing the initial pressure, the burning speed 

decreases. Some important results are presented in the following. 

• Equivalence Ratio 

The effect of equivalence ratio on burning speed can be seen in Figures 20-22. 

Figure 20 shows burning speed measurements for mixtures of JP-8 and air at initial 

temperature of 450 K and initial pressure of 1 atm with different stoichiometric ratios. 

Note that results are plotted along the isentropes. That means the pressure values have an 

isentropic relation with the unburned gas temperature. 

Figure 21 and 22 present the same measurements as in Figure 18 for initial 

pressure of 5 atm and 9 atm respectively.  

• Pressure Effect 

The effect of pressure on burning speed can be seen in Figure 23. In this Figure 

burning speeds for stoichiometric mixtures of JP-8 and air at initial temperature of 450 K 

and various initial pressures have been plotted. It clearly shows that burning speed has an 

inverse relation with pressure. 

 

• Autoignition of JP-8  

In Figure 24, the pressure-time history of stoichiometric JP8-air mixtures with 

initial temperature of 450 K and initial pressure of 1 atmosphere. Ionization signals are 

also shown in this figure. The signals verify that for this particular flame there is no 

buoyancy effect and flame is symmetrical. However increasing the initial pressure makes 

the flame speed slower and also makes the flame buoyant. 

As temperature and pressure of unburned gas increase it reaches to a point that all 

end gas autoignites. An example of this condition is shown in Figure 25. It can be seen 

that autoignition produces the characteristic violent pressures oscillations associated with 

“knock” in IC engines. In general we detect the starting point of autoignition by 
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observing the sudden pressure rise in the pressure-time history. For example as is shown 

in Figure 25, autoignition happens for a stoichiometric JP-8 air mixture at initial 

temperature and pressure of 500 K and 10 atm respectively where the pressure and 

temperature reach 36 atm and 680 K. 
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Figure 1a. (top) Schematic of 15.24 cm (6 inch) ID spherical combustion 

chamber and 1b. (bottom) 13.33 cm (5.25 inch) ID cylindrical combustion 

chamber, with aspect ratio of 1. 
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Figure 2: Schematic of the liquid fuel line and the cylindrical vessel. 
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Figure 3: Fuel reservoir and heated coil on the line.   
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Figure 4- Pressure ratio vs. ratio of burned gas volume to the total volume of 

combustion chamber for different mixtures of methane-air-diluent mixtures. 
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 φ = 1.0,  Pi = 1 atm, 

(a) Dil =0%  (b) 5%   (c) 10%   (d) 15% 
 

       
t = 5 msec, p/pi = 1  t = 7 msec, p/pi = 1 t = 10 msec, p/pi = 1 t = 15 msec, p/pi = 1 

       
t =15 msec, p/pi = 1.05  t = 17 msec, p/pi = 1.04 t = 25 msec, p/pi = 1.07 t = 40 msec, p/pi = 1.1 

       
t =25 msec, p/pi =1.45  t = 30 msec, p/pi = 1.47 t = 40 msec, p/pi = 1.5 t = 53 msec, p/pi = 1.29 

 

 

Figure 5- Flame propagation in cylindrical vessel, methane-air-diluent mixture, φ 

=1.0, pi =1.0 atm and Ti = 298 K. (a) 0% diluent (b) 5% diluent (c) 10% diluent 

(d) 15% diluent. 
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Figure 6- Comparison of burning speed of stoichiometric methane-air-diluent 

mixtures with those determined by PREMIX code along isentropes with initial 

pressure of 1 atm and initial temperature of 298 K, with different diluent 

percentage. 
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φ = 1.0, Pi = 5 atm 

(a) Dil = 0 %  (b) 5 %   (c) 10 %  (d) 15 % 
 

       

t = 3 msec, p/pi = 1  t = 3 msec, p/pi = 1 t = 3 msec, p/pi = 1 t = 20 msec, p/pi = 1 

       
t = 14 msec, p/pi = 1.03  t = 19 msec, p/pi = 1.03 t = 29 msec, p/pi = 1.03 t = 80 msec, p/pi = 1.2 

       
t = 35 msec, p/pi = 1.4  t = 50 msec, p/pi = 1.4 t = 67 msec, p/pi = 1.4 t = 110 msec, p/pi = 1.5 

 

Figure 7- Shadowgraph pictures of flame propagation in the cylindrical chamber. 

Methane-air-diluent, φ = 1.0, pi = 5.0 atm and Ti = 298 K. (a) 0% diluent (b) 5% 

(c) 10% (d) 15%. 
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Figure 8- Comparison of burning speed of stoichiometric methane-air-diluent 

mixtures with those determined by PREMIX code along isentropes with initial 

pressure of 5 atm and initial temperature of 298 K, with different diluent 

percentage. 
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 φ = 0.8, Pi = 5 atm 

(a) Dil=0%  (b) 5%   (c) 10%   (d) 15% 
 

       
t = 20 msec, p/ pi = 1.0 t = 20 msec, p/ pi = 1.0 t = 20 msec, p/ pi = 1.02 t = 40 msec, p/ pi = 1.0 

       
t = 30 msec, p/ pi = 1.03 t = 40 msec, p/ pi = 1.03 t = 40 msec, p/ pi = 1.02 t = 80 msec, p/ pi = 1.03 

       
t = 40 msec, p/ pi = 1.14 t = 60 msec, p/ pi = 1.14 t = 60 msec, p/ pi = 1.06 t = 120 msec, p/ pi = 1.11 

       
t = 50 msec, p/ pi = 1.26 t = 80 msec, p/ pi = 1.33 t = 80 msec, p/ pi = 1.13 t = 160 msec, p/ pi = 1.24 

       
t = 60 msec, p/ pi = 1.48 t = 80 msec, p/ pi = 1.68 t = 123 msec, p/ pi = 1.41 t = 180 msec, p/ pi = 1.36 

 

 

Figure 9- Shadowgraph pictures of flame propagation in the cylindrical chamber. 

Methane-air-diluent mixture with φ =0.8, pi =5.0 atm and Ti = 298 K. (a) 0% 

diluent (b) 5% (c) 10% (d) 15%. 
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Figure 10- Comparison of burning speed of methane-air-diluent mixtures, φ = 

0.8, with those determined by PREMIX code along isentropes with initial 

pressure of 5 atm and initial temperature of 298 K, with different diluent 

percentage. 
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 φ = 1.2, Pi = 5 atm 

   (a) Dil = 0 %        (b) 5 %       (c) 10 % 
 

     
t= 12 msec, p/ pi = 1.0 t = 12 msec, p/ pi =1.0 t = 28 msec, p/ pi = 1.0 

     
t = 37 msec, p/ pi = 1.07 t = 43 msec, p/ pi = 1.03 t = 92 msec, p/ pi = 1.1 

     
t = 47 msec p/ pi =1.15 t = 93 msec, p/ pi = 1.35 t = 159 msec, p/ pi = 1.8 

 

 

Figure 11- Shadowgraph pictures of flame propagation in the cylindrical 

chamber. Methane-air-diluent mixture, φ =1.2, pi =5.0 atm and Ti = 298 K (a) 0% 

diluent (b) 5% (c) 10%. 
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Figure 12- Comparison of burning speed of methane-air-diluent mixtures, φ = 

1.2, with those determined by PREMIX code along isentropes with initial 

pressure of 5 atm and initial temperature of 298 K, with different diluent 

percentage. 

 

 

300 320 340 360 380 400 420 440 460
0

5

10

15

20
 PREMIX

Smooth Flame

S b (c
m

/s
ec

)

Tu (K)

 
 

10% 

5% 

0% Diluent 

 

 

 



 26

 

 
 
Figure 13: Flame pictures of stoichiometric propane air mixture at initial temperature and 

pressure of 450 K and 1 atm. 
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Figure 14: Flame pictures of stoichiometric Ethyl Alcohol and air mixture at initial 

temperature is 298 K and initial pressure of 1 atm. 
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Figure 15: Flame propagation of stoichiometric JP-8 and air mixture at initial 
temperature and pressure of 450 K and 1 atm. 
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Figure 16- Pressure variation in a constant volume chamber for normal 

combustion without autoignition. JP8-Air, Pi = 1 atm, Ti = 500 K, φ =1. 
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Figure 17- Pressure variation in a constant volume chamber for normal 

combustion without autoignition. JP8-Air, Pi = 2 atm, Ti = 500 K, φ =1. 
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Figure 18- Pressure variation in a constant volume chamber for normal 

combustion without autoignition. JP8-Air, Pi = 5 atm, Ti = 500 K, φ =1. 
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Figure 19- Comparison of burning speed of JP8-air mixtures, φ = 1.0, along 

isentropes with initial pressure of 1, 2 and 5 atmospheres and initial temperature 

of 500 K. 
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Figure 20: Burning speed measurements for mixtures of JP-8 and air at initial 

temperature of 450 K and initial pressure of 1 atm 
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Figure 21: Burning speed measurements for mixtures of JP-8 and air at initial 

temperature of 450 K and initial pressure of 5 atm 
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Figure 22: Burning speed measurements for mixtures of JP-8 and air at initial 

temperature of 450 K and initial pressure of 9 atm 
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Figure 23: Burning speed measurements for stoichiometric mixtures of JP-8 and 

air at initial temperature of 450 K. 
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Figure 24: Pressure variation in a constant volume chamber for normal combustion 

without autoignition. JP8-Air, Pi = 1 atm, Ti = 450 K, φ =1. 
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Figure 25: Pressure variation in a constant volume chamber for combustion with 

autoignition. JP8-Air, Pi = 10 atm, Ti = 500 K, φ =1. 
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